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Abstract. The nature of the Maxwell-Cartesian spherical
harmonics S| K” and their relation to tesseral harmonics Y;,,,
is examined with the help of “tricorn arrays” that display
the components of a totally symmetric Cartesian tensor of
any rank in a systematic way. The arrays show the
symmetries of the Maxwell-Cartesian harmonic tensors
with respect to permutation of axes, the traceless proper-
ties of the tensors, the linearly independent subsets, the
nonorthogonal subsets, and the subsets whose linear
combinations produce the tesseral harmonics. The two
families of harmonics are related by their connection
with the gradients of 1/r, and explicit formulas for the
transformation coefficients are derived. The rotational
transformation of i functions is described by a relatively
simple Cartesian tensor method. The utility of the
Maxwell-Cartesian harmonics in the theory of multipole
potentials, where these functions originated in the work of
Maxwell, is illustrated with some newer applications
which employ a detracer exchange theorem and make use
of the partial linear independence of the functions. The
properties of atomic orbitals whose angular part is
described by Maxwell-Cartesian harmonics are explored,
including their angular momenta, adherence to an
Unsold-type spherical symmetry relation, and potential
for eliminating an angular momentum ‘‘contamination”
problem in Cartesian Gaussian basis sets.

Key words: Spherical harmonics — Tricorn — Multipole
potential — Atomic orbitals

1 Introduction

There are two major families of spherical harmonic
functions that are widely applied in physical problems:
the Maxwell-Cartesian harmonics, which arise primarily
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in problems involving multipole expansions, and the
tesseral harmonics, which are best known for their role
in atomic orbitals and the general quantum mechanical
problem of angular momentum, though they are widely
used for multipole expansions and other problems as
well.

The literature on this subject presents two different
points of view on the definition of spherical harmonics.
Major mathematical works [1-3] and some physics texts
[4-7] adopt the classical definition of a spherical har-
monic function as a homogeneous polynomial in x,y,z
which satisfies the Laplace equation; however, modern
physics works [8—14], limit spherical harmonics to the
tesseral harmonics, sometimes basing this choice on a
quantum mechanical definition whereby a surface
spherical harmonic is an eigenfunction of both L?, the
square of the angular momentum operator, and L., the
z-component of the angular momentum operator.
The classical definition is the broader one, encompassing
both families discussed here.

It is evident that certain functions in the two families
are similar. Thus, the potential of a point charge has the
same angular dependence as the s orbital of the hydro-
gen atom, the potential of a point dipole has the same
angular dependence as a p orbital, the potential of a
point quadrupole has the same angular dependence as a
d orbital, and so on [15]. However, the relations between
the two families are more generally in the form of linear
transformations which combine the functions of one
family to give any member of the other [11, 14, 16].
Apparently the fact is overlooked that most of the
Maxwell-Cartesian harmonics are not eigenfunctions of
L., and would not qualify as spherical harmonics by the
quantum mechanical definition. Likewise any linear
combination of tesseral harmonics of the same degree
but with different eigenvalues of L, would qualify as
spherical harmonics under the classical, but not under
the quantum mechanical, definition. Thus, while it is
usually understood that the two families of functions
apply to many of the same physical problems, there is a
need for clarification of the properties of the Maxwell—-
Cartesian harmonics, particularly as these affect their
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application to problems usually cast in terms of tesseral
harmonics.

The purpose of this work is to continue the
systematic examination of the Maxwell-Cartesian
harmonics which I began in an earlier paper [16],
where their properties as components of totally sym-
metric and traceless Cartesian tensors were developed.
The organization of the article is as follows. The
mdjOI’ definitions are reviewed in Sect. 2. The tri-
corn” array as a means of displaying important fea-
tures of the Maxwell-Cartesian harmonics as tensor
components is introduced in Sect. 3. Mathematical
properties of the Maxwell-Cartesian harmonics and
the relation of these functions to the tesseral harmo-
nics are presented in Sects. 4-6. The unique properties
of the Maxwell-Cartesian harmonics with some recent
applications to the theory of multipole potentials are
illustrated in Sect. 7. In Sect. 8 these functions are
shown to be suitable descriptions of the angular part
of atomic orbitals, and their properties are discussed.

2 Definitions
2.1 Cartesian tensors

A Carte51an tensor of rank » is denoted by a sans-serif
symbol A™ or by the component index notation 45..,, ,
where Greek subscripts denote Cartesian axes 1,2, 3,
corresponding to axes x, y,z, respectively. The complete
tensor is an array of 3" components.

If 4,/.,, is invariant under any permuation of the
sequence o - - - o, the tensor is said to be totally sym-
metric. The Compressed form of such a tensor is an array
of the (n 4 1)(n + 2)/2 distinct components of A", and
these are alternatively written A(”L e Where n; is the
number of times i occurs in the component index set
oy ---o,. The n; are called degree indices and satisfy
ny +np + n3 = n.

The components of A" are also designated by the
simpler notation A§<) , where K is a running index which
stands for a particular component index set or degree
index set. The order of the K values is the canonical
order [17]. The relations among the various index
notations are illustrated in Table 1.

2.2 Tensor contractions

An n-fold contraction is denoted by -n-, as in

A . BW — 4 g (1)

00y D Otpee0ty

where the convention of implied summation over
repeated Greek subscripts is followed. For totally
symmetric tensors the contraction can be written [17]

AW BY =" g(nimmyns)AY) B (2)
ninans

where g(n; ninans) = n!/ni!nylns!, and the sum is over all
degree index sets for rank ».

Table 1. Maxwell-Cartesian surface spherical harmonics

no Kot m sPm Nok
0 1 - 000 1 4
1 1 1 100 & 4n/3
2 2 010 4n/3
3 3001 z 4n/3
21 11 200 3% -1 167/5
2 21 110 3%p 127/5
4 22 020 371 167/5
5 32 011 392 127/5
6 33002 32 -1 167/5
3001 111 300  15%° —9% 1447/7
2 211 210 1582 -3 96m/7
3 311 201 15%% -3 961/7
4 221 120 15%% 3% 96m/7
5321 111 15%3% 607/7
6 331 102 15%2% - 3% 961/7
7222 030 15y -9 1447/7
8 322 021 15% -3 96n/7
9 332 012 15}22 -39 96n/7
10 333 003 152 -9z 1447/7
4 1 1111 400  105%* —90%% +9 256m
2 2111 310 105%%p — 45%p 1607
3 3111 301 105%%%2 — 4532 1607
4 2211 220 1058257 — 1582 — 159> +3  144n
53211 211 105%%9% — 152 80
6 3311 202 1058722 — 1532 — 1522 4+3 1441
7 2221 130 105%° — 453 1607
8 3221 121  105%%2 — 153 807
9 3321 112 105%%2 — 15%p 80
10 3331 103 105%2° — 4532 1607
11 2222 040  1059* — 9037 +9 2567
12 3222 031 10552 — 4552 1607
133322 022 1059?22 — 1557 — 1522 + 3 144n
14 3332 013 105§2° — 4592 1607
15 3333 004 1052 — 902> +9 2567

4Set of component indices «; -
>Set of degree indices njnyn;

2.3 Traces

The trace of A™ in one component index pair is formed
by contraction of that pair, as in Ay, ,,. For a totally
symmetric tensor we can write

A(n) —A( n)

VL3, ni+2,n,n3

(n) (n)
+An1 Ja+2,n3 +An1,n2,n3+2 : (3)
If the trace vanishes in all index pairs, the tensor is
totally traceless. If a totally symmetric tensor is traceless
in one index pair, it is totally traceless.

2.4 The detracer

A totally symmetric tensor A™ is rendered totally
symmetric and traceless by the detracer operator .7,
which forms a linear combination of the tensor with all
its multiple traces [16] in the manner



[n/2]
TaAl) = (=1)"(2n—2m—1)!
m=0
X Z 5‘110(2 T 57-2»1—1“%1 E‘?z’l"'vmvn,dzm+]"'oin ) (4)
T{a}
where [n/2] denotes the integer part of n/2;

(2k—1)1=1-3.5-(2k—1) with (=1)!! = 1; d,p is the
Kronecker delta; and the sum over T{a} is the sum over
all permutations of the symbols oy ---a, which give
distinct terms.

2.5 Maxwell-Cartesian spherical harmonics

Let r designate a point with Cartesian coordinates
rp =x,ry = y,r3 = z. Let f = r/r represent a point on the
unit sphere with coordinates = x/r,y = y/r,z2 = z/r.
A function f(r) is called a solid spherical harmonic of
degree n if f is homogeneous of degree » in x,y,z and
satisfies the Laplace equation V2f = 0. The function
f(£) is called a surface spherical harmonic of degree n.
The Maxwell-Cartesian surface spherical harmonics
S arise in the following way. Maxwell [1, 18] related
the potential of a general multipole of order » to an nth
order gradient of »~! with respect to a general set of
axes, and he showed that a general surface spherical
harmonic of degree # is simply related to the gradient so
obtained. When all of the axes coincide with Cartesian
axes, his formula reduces to [16]
S{lh (1) = (1) VRV = 7 5)
where V, = 0/0r,. See the Appendix for details. (I have
previously [16] used the name ““Cartesian basis spherical
harmonics” for these functions, but “Maxwell-Carte-
sian spherical harmonics” seems preferable to avoid
confusion with the infinite variety of spherical harmonics
that can be expressed in terms of Cartesian coordinates.)
If we replace A" in Eq. (4) with r" and convert
to degree index form, the result is the solid spherical
harmonic [16]

[1/2] [n2/2] [3/2]

S =333 (= 1)"(2n — 2m — 1)1

m1=0 mry=0 m3=0

X |:nl :| |:n2 :| l:n3 :|},,2mxn1—2m1yn2—2mzzn3—2m3 ,

nmj nmy ms
(6)

where m =m; +my+ms and [] =n!/2"m!(n — 2m)\.
The Maxwell-Cartesian surface spherical harmonics of

nonnegative degree n are, in tensor form [1],
SO (&) =S (r) . (7)

The particular formulas from Egs. (6) and (7) for n = 0-
4 are given in Table 1. The polynomials do not appear to
be homogeneous in %, y,Z because a factor > in each
term has been eliminated by virtue of the constraint
PP +2 =1

Corresponding solid spherical harmonics of negative
degree —n — 1 are obtained by multiplying the surface
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spherical harmonic by »~"~! [1]. Such harmonics are still
components of a totally traceless and symmetric tensor
of degree n, i.e., the rank of the tensor is no longer equal
to the degree of the homogeneous function.

2.6 Tesseral harmonics

Let 6,¢ be the polar angle and azimuth, respectively,
of a spherical coordinate system. The unnormalized
tesseral harmonics Y)"(0, ¢) of degree n and order m are
defined in terms of the associated Legendre functions
P"(cos 0) according to

Y,'(0,¢) = Py’ (cos 0)e™? (8)

for m =0,=£1,...,£n. The real and imaginary parts of
Y" are each surface spherical harmonics known as
tesseral, sectoral, and zonal harmonics in much of the
literature. The term “‘tesseral” harmonics is used here
for any of the (generally complex) functions defined by
Eq. (8).

Like the Maxwell-Cartesian harmonics, the tesseral
harmonics can be derived from gradients of 7!
according to Hobson’s formula [1] for 0 < m < n:

(1)
(n—m)!
where the spherical coordinates 6, ¢ are replaced by the
Cartesian unit vector t corresponding to the same

direction in space.
The normalized tesseral harmonics Y, are given by [§]

Y7(F) = (Vi +ivy)" Vet 9)

| 2n+ 1)(n—m)! 1/2
Ynm = (-1 Y Yy ’ 1
(i [ B e, (10)
which obeys the useful relation [8]
Ynfm = (_1)mYn*m ; (11)

where the asterisk denotes the complex conjugate.
Explicit formulas for the lower order Y,, in both
spherical and Cartesian coordinates are available in
various tables [8, 11, 14].

3 Tricorn arrays

A useful way to display the components of a totally
symmetric Cartesian tensor of any rank »n is the
following. Consider the three-dimensional space of
the degree indices, as shown in Fig. I. A plane
which intersects all axes at n; = n contains all the points
whose coordinates are the degree indices satisfying
ny + ny + n3 = n. There are (n+ 1)(n + 2)/2 such points
within a triangular region of the plane. The array of
points, which I will call a ““tricorn”, thus represents all
the distinct components of a totally symmetric tensor of
rank n. The full stack of tricorns extending from the
origin to infinity comprises a polytensor [17].

A tricorn for n = 3 with the degree indices for each
component is shown in Fig. 2. The tricorn will always be
drawn here with n3 increasing from bottom to top. Note



n

4

Fig. 1. The three-dimensional space of nonnegative integers. The
points represent the degree indices of totally symmetric tensors.
Each plane contains all points corresponding to the components of
a compressed tensor of rank n = ny + ny + n3

O]

300 210 120 030

Fig. 2. Tricorn array of the degree indices of a tensor of rank 3.
The circled points are an example of a set whose sum constitutes a
trace of the tensor

the three circled points. These are the components whose
sum is a trace of the tensor, according to Eq. (3). The
sum of any three components which are located at the
vertices of a “‘subtricorn’ with sides of 2 integer units
constitutes a trace of the tensor. In the case of a tensor of
rank 2, there is only one such set of points, and these
correspond to the diagonal elements of the conventional
3 x 3 matrix representation.

The canonical order of tensor components is shown
by the dashed line in Fig. 3, starting with point #00 and
proceeding in the direction of the arrow. The compo-
nents are numbered in this order by index K in Table 1.
The same order is followed in a proposed one-dimen-
sional array of tensor components [17].

Tricorn arrays of the S™ tensors in graphical form
based on the formulas of Table 1 are shown in Figs. 4, 5,
6, and 7. Each component function is shown as a surface
whose distance from the origin in any direction is the
absolute value of the function. Positive values are shown
in dark gray and negative values in light gray. The origin
for each function is centered in a cube whose edges are
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Fig. 3. Canonical order of tensor components in a tricorn array

Fig. 4. Tricorn array for SV In this and subsequent figures the
dark gray surfaces correspond to positive values of the functions
and the light gray surfaces to negative values, and all surfaces in the
tricorn are drawn to the same scale. The figures were produced with
the Mathematica package mentioned in Sect. 10

Fig. 5. Tricorn array for s@

parallel to the x-y-z-axes. The axes form a right-handed
system with z toward the top.
There are several noteworthy features of the tricorns.

1. The functions show many similarities to the familiar
angle-dependent parts of atomic orbital functions



found in textbooks. The latter are, however, tesseral
harmonics, which differ in important ways from the
Maxwell-Cartesian harmonics.

2. The arrays have a striking symmetry that is un-
familiar in the tesseral harmonics, i.e., the picture is
unchanged on any permutation of the axes.

3. For n>2 the number of functions in the array,
(n+1)(n+2)/2, is greater than the number of
tesseral harmonics, 2n + 1, of the same degree.

4. The traceless nature of S” is evident from the
tendency for positive and negative lobes to cancel for
any three functions located on the vertices of a

Fig. 6. Tricorn array for s
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subtricorn as in Fig. 2. Where this is not obvious, one
can prove it more easily by adding the corresponding
functions in Table 1.

The tricorn is also useful for displaying the relations
among the coefficients of any particular harmonic
function. Any solid spherical harmonic can be written
in the form [16]

fr)=A" .p.p = Z g(n;n1n2n3)A§I’f?12n3x"‘y"zz”3 )

nynayn3
(12)
where A” is a totally symmetric and traceless tensor
with const%nt components. For example, consider the
function S,,, in Table 1. Let
£(r) =Sl = 105x* — 90x%2 + 95
= 24x* — T2x%)? — 72322 + 9yt + 18y72 + 924 .
(13)

The values of Ag) are obtained by dividing each
coefficient in Eq. (13) by the appropriate g value. The
resulting A® tensor takes the tricorn form

9
0 0
-12 0 3
0 0 0 0
24 0 -12 0 9.

Note that all traces vanish in this array. Such a
“coefficient tricorn” of rank » uniquely defines each
component of the spherical harmonic tricorn of rank n.

[llustrations of the tesseral harmonic surfaces are
omitted here, as many excellent versions are available

Fig. 7. Tricorn array for S
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[19-21]. They may also be generated with the Mathe-
matica package mentioned in Sect. 10.

4 Properties of Maxwell-Cartesian harmonics

A number of properties of the Maxwell-Cartesian
harmonics are listed here for use in the applications
to follow. Some comparisons with tesseral harmonics are
included to help in understanding the distinctions
between the two families. The proofs have been given
previously [16] for the Maxwell-Cartesian harmonics.

4.1 Independent subsets

Because of the vanishing of all traces, the components of
Sf,’]’),m are not linearly independent. A linearly indepen-
dent subset is constituted by those components in which
some #n; only has values 0 and 1. Such a subset is
illustrated in Fig. 8, where the two bottom rows
correspond to n3; =0,1. Likewise, the row along any
side of the tricorn along with the row next to it constitute
a linearly independent subset. It is easily seen that there
are 2n + 1 components in such a subset and that there
are no trace relations among them.

An interesting proof of the corresponding in-
dependent subsets has been given by Axler et al. [3] for
spherical harmonics in N-dimensional space.

The number of independent components of S™ is the
same as the number of components of Y, i.e., 2n+ 1.
The independent components are, however, different
functions in the two families.

4.2 Spherical symmetry theorems

For Maxwell-Cartesian harmonics,
ST @) -n-S"(F) = (2n)1/2" . (14)

The analogous equation due to Unsdld [22] applies to
tesseral harmonics in the form

S 700

m=—n

= (n+1)/4n . (15)

300 210 120 030

Fig. 8. A linearly independent subset of 5@, shown by filled circles

Equations (14) and (15) both show that the sum of the
squares of the magnitudes of the harmonics of degree
n is independent of the direction in space.

4.3 Normalization integrals

The normalization factor N, for the Maxwell-Cartesian
harmonics is the integral of the squared function over
the surface of the unit sphere:

Nn,n1n2}’l3

= [ 150 0Pds
/2] [12/2] [n3/2]
>N (=n"@2n—2m— 1!

mp =0 m2:0 ”13:0

[ e

where m = m; + my + m3. Values of N,k are listed for the
low-order functions in Table 1. The analogous integral
for the normalized tesseral harmonics is, of course [§],

/ Yom(B)Y5, (F)ds = 1 . (17)

s

_dnnlnolng!
O 2n+1

4.4 Orthogonalities

While the tesseral harmonics of differing degree n or
different order m are all mutually orthogonal, the
situation for the Maxwell-Cartesian harmonics is more
complicated. If n# 1 we have the orthogonality
condition

n (1)
/ngulzn_xszllmds =0

s

(18)

Likewise, if any degree index of function S has parity
opposite to that of the corresponding mdex of function
S£">, the functions are orthogonal. If the corresponding
degree indices have the same parity in both functions,
the integral of their product is given by the nonvanishing
expression

/ SIS?lenz I 1213 ds

17171 [m/2) [n2/2] [n3/2]
_ Arhibll! S (=1)"(2n—2m — 1)1

m1=0 mry=0 m3=0

[l

where m = m; +my +ms and k; = (I; — n;)/2 + m; and
the g function is zero if any argument is negative. Thus,
some of the component functions in S™ occur in
nonorthogonal pairs, whose locations in the tricorn are
shown in Fig. 9. A simple rule is that both members of
such a pair are located on the same “trace network”, i.e

2n+1
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Fig. 9. Trace networks of nonorthogonal pairs of 5
shown by points with like symbols

components,

the network of contiguous subtricorns whose vertices
comprise the traces of the tensor. A trace network thus
constitutes a set of functions, any two of which are
nonorthogonal.

A consequence of this result is that the independent
subsets described previously contain nonorthogonal
pairs of components. By contrast the Y, functions for
given n are both independent and orthogonal.

5 Relations between SS? and Y,
The Y, are related to the S by way of their mutual

connections with the gradlents of ¥~!in Egs. (5) and (9).
The result is, for 0 < m < n, [16],
2n+1

Yom = (=1)" [471(}1 )l = m)!} :

« Z ik <IZ>SIETIn>1—k,n—m , (20)

k=0

where (}') = m!/k!(m — k)!. For negative orders Eq. (11)
applies.
The following features of Eq. (20) are noteworthy:

1. The sum on the right side is a linear combination of
the members of a single row in the S™ tricorn. This is
illustrated in Fig. 10, where the rows corresponding
to each Y, are indicated. Some examples of the
expansion for low n are shown in Table 2.

2. By inserting Eq. (6) into Eq. (20) one obtains a
Cartesian polynomial for any V,,. This potentially
useful formula is incorporated in the Mathematica
package mentioned in Sect. 10. An alternative
Cartesian polynomial form has been given by
Thompson [13].

3. Y, is simply a constant times S00 Similarly, certain
components in the second and third rows from the
top of a tricorn are the same as the real or imaginary
part of one of the Y,,, aside from a constant factor
Otherwise the Y, are distinct from any of the S

The inverse of this above transformation is accomphshed
as follows. We require an expansion of S,(<") of the form
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300 210 120 030

Fig. 10. Subsets of S®
harmonics Y3 4,

whose linear combinations give tesseral

Table 2. Expansions of Y, in Maxwell-Cartesian harmonics

n m Ynm
1 0 (3/4m)'2s30)
+1 (3/4n)' P [F510y — iS4h)
2 O Gnemlsy
£1 (5/24n )/ﬁs%gl - fS(%l] o
:|:2 (5/96 ) / [ S020 +SZOO i 2iSllO}
3 O Onemlsy
*1 (7/192m) / Fslo)z - S(()lz}
+2 (7/480m )1/2[ S(m +S§01 +2i Sm]
+3 (7/2880m) "2 [£3513) F Siog + iS4 — iS5y

Z C nm’ ) (21)

where K, as usual, stands for an index set n;nyn3. Since
the Y,,, comprise an orthonormal set, we can find the
coeflicients by multiplying both sides by Y and
integrating. For m > 0 the result is

= t/ )y, ds

m 2n+1
= (=1 {4n(n +m)l(n

—mﬂyﬂﬁi“”M%<Z>

k=0

X /Sl(gl)SlgferI—k,n—mdS . (22)

N

For negative order we have by virtue of Eq. (11)

" = (=) (23)

—m,

The integrals in Eq. (22) are evaluated by Eq. (19). An
example of this transformation is given in Table 3. Note
that all the expansions in the table are real, as required.
Finally, by inserting Eq. (21) in Eq. (16) and using the
orthonormality of the Y,,, one obtains the sum rule

n
S lei P = Nax (24)

m=—n
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Table 3. Expansion of $®in tesseral harmonics

ninpns S)S%LG}

200 —(4n/5)"*Yog + (67/5)"* (Yo + Y_2)
110 (671/5)1/2( Yn+ 1 o)

101 (67/5)" (= Ya1 + Ya_1)

020 —(41/5) Yoy — (67/5)/* (Yo + Y1)
011 i(61/5)"*(Yay + Y1)

002 (16m/5)"* Yy

6 Rotational transformations

The transformation of spherical harmonics under
rotations is important in applications involving a
number of systems with different orientations or the
averaging of properties of a system over orientations.
We take the rotational transformation to have the
following meaning. Let a point P on the unit sphere have
coordinates 7 in a Cartesian system X. If we place in the
same space a second Cartesian system X', rotated with
respect to X, then point P has coordinates 7, with respect
to X'. The vector transformation is 7, = A,sr’g, where ;ocﬁ
is the direction cosine of axis « in X’ with respect to axis
p in X [23]. Then S< (') is a function whose relation to
X' is the same as thdt of S( )( ) to X. We define the

rotated function 51(<) (r) = S1(<” )(f’ ). The rotational
transformation is

SO () = TS (§) (25)
where T'™ is the transformation matrix of order

(n+1)(n+2)/2 and S™ is represented as a column
vector with its Components in canonical order. Let the
rows and columns of I'™ be indexed by the index sets
op---o, and B, ---f,, respectively, where both index
sets span only the compressed arrays of order
(n+ 1)(n+2)/2. Since S™ must transform like ¥, the
matrix elements are [17]

Z )‘D‘Iﬁl

N{B}

where the sum over N{f} is the sum over all
distinguishable permutations of f5; - - - §, when numerical
values are assigned. The 4,5 are known functions of the
Eulerian angles [23], or they may be known directly from
the geometry of the system.

As an example, consider the rotation of Sgoo through
30° in the right-handed sense about the z-axis. Equation
(25) gives

Sy = (3/4)Ssy + (V3/2)S\3) + (1/4)S3 - (27)

This case is shown graphically in Fig. 11, where the
functions are scaled by their coefficients in Eq. (27). This
example illustrates the basic feature of the rotational
transformation of a tensor: the rotation of one
component really is produced by a linear combination
of the unrotated components.

The corresponding rotational transformation of
tesseral harmonics is usually performed by the methods
of spherical tensors, using spherical coordinates rather

oq By anﬁn ) (26)

200

-+ =
7

Fig. 11. Transformation of Sg(z)z) by 30° rotation about the z-axis

than Cartesian coordinates [11]. This procedure has the
computational advantage of a tranformation matrix
whose order is only 2n + 1, while the simple form of
Eq. (26) gives the Cartesian method some programming
advantage.

The Mathematica package mentioned in Sect. 10
includes programs for calculating the rotation matrix
of Eq. (26) and carrying out the transformations.

7 Multipole potentials

Many problems related to the multipole expansion of the
electrostatic potential have been worked out in terms of
the Maxwell-Cartesian spherical harmonics using the
formalism described here [16, 24, 25]. Two applications
will be summarized here to bring out the importance
of the Maxwell-Cartesian harmonics as components of
traceless tensors.

7.1 The detracer exchange theorem

The detracer exchange theorem [16, 24] states that if A"
and B" are totally symmetric tensors

A .y 7,BW =7 AW .. BW (28)

A useful application of this theorem is the following.
Let p(r) be the electric charge density at point r for an
arbitrary charge distribution located within a finite
circumsphere. Let the nth order multipole moment of
the charge distribution about the origin be defined by
[26]
m_1

n!

u p(r)r"dv , (29)

v

where the integration is over the volume of the
circumsphere. The potential of the charge distribution
at a point r outside the circumsphere is [26]

n- V!

= zf"*w") n-SU(E) (30)

where the last equality follows from Eq. (5). It is in the
sense of Eq. (30) that S")(¢¥) represents the angular
dependence of the potentlal of a multipole moment of
rank n. Now let M@ be the traceless multlpole moment
defined by M") = 7,n™ | a definition which is equiva-
lent to the widely used multipole moments of Bucking-



ham [27]. Then, by the detracer exchange theorem,
Eq. (30) becomes

o0

o.(r) = Zfz"*ll\/lm cn-r .

n=0

(31)

Thus, Egs. (30) and (31) give the potential in equivalent
forms, one of which is an expansion in spherical
harmonics and the other a simple power series in r.
Certain electrostatic problems are greatly simplified by
the latter form [16, 25]. This point is worth close
attention, as it is widely overlooked in textbooks.

7.2 Linear independence

We have seen that the Maxwell-Cartesian harmonics are
not all linearly independent, yet useful expansions with
these functions as basis functions are possible using the
limited independence that does exist. Suppose a physical
problem reduces to the vanishing of an expansion in
S™ of the form

S AW . n-sr) =0,
n=0

where A” is a totally symmetric tensor. If the S
functions were all linearly independent, one could
conclude that A™ = 0 for all n, from which conclusions
could be drawn regarding the physical quantities in the
coefficient tensor. This is not the case here, but by the
detracer exchange theorem we can transform Eq. (32) to

ZﬁnAW nr=0 .
n=0

(32)

(33)

Since the functions r” are entirely linearly independent, it
follows that

T A" =0 (34)

for all n. Hence, in spite of linear dependence among the
spherical harmonics, one obtains an important relation
regarding the traceless part of the coefficient tensor.

As an example of this type of problem, consider a
conducting sphere of radius a placed in an arbitrary
electrostatic field whose potential ¢,(r) is given by the
Taylor series expanded about an origin at the center of
the sphere:

Bot) = — > (a)ED(©0) - n - (35)
n=0

where E®(0) = —V"¢,(0). It may be noted that E™ (0)
is totally symmetric and traceless for an electrostatic
field, and hence Eq. (35) is equivalent to an expansion
in S"(r) by the detracer exchange theorem. The field
induces a charge distribution in the sphere, giving rise to
multipole moments whose potential is given by Eq. (30)
or Eq. (31). The total potential must be equal to a
constant (which we take to be 0) inside the sphere and
equal to the sum ¢, + ¢, outside the sphere. Continuity
of the potential at the surface of the sphere then
requires
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d(ar) + dy(ar) =0 . (36)
From Egs. (32) and (33) the left side of Eq. (36) can be
expressed as an expansion in either S™ or r". The latter
case is the more useful, since it has traceless coefficient
tensors which must then vanish. Each vanishing tensor
thus gives the relation

M = (& /) E™ (0) (37)

for all n. The coefficient @**!/n! is the multipole
polarizability of a conducting sphere. The significance
of this result for polarizabilities of atoms has been
discussed elsewhere [25].

8 Atomic orbitals

8.1 Maxwell-Cartesian harmonics as angular
functions for orbitals

The wave functions (r) for electron orbitals in the
hydrogen atom are found by solving the Schrédinger
equation under the assumption of separation of the
coordinate variables [9]. A possible separation is

Y(r) = R(rF(¥) , (38)

where R(r) is a function only of the distance r from the
nucleus and F(t) is a function only of the direction in

space. It will be shown here that Sl(g)(f) is a solution for
F(r) and thus represents the angular part of a possible
atomic orbital in a one-clectron atom. The symbol / for
the degree of the function is used in what follows to
conform to universal usage in quantum mechanics.
The separation of variables results in a transforma-
tion of the Schrodinger equation into separate equations
for R(r) and F(r), the equation for the latter being [9]

L’F(f) = BF(F) (39)

where L? is the operator for the square of the angular
momentum and f is an eigenvalue. The form of L? in
terms of spherical polar coordinates is commonly used
[9], but for the present purposes it is more useful to cast
this operator in Cartesian form. Let V = 0/0r, where the
derivatives are to be taken before introducing the
constraint > 4 7* 4 2% = 1. It is shown in the Appendix
that

L’=-RV-V-2t-V—ii:VV] . (40)
Since S,(f) (t) obeys the Laplace equation we have
v.-vsd@) =0 . (41)

Also, by Euler’s theorem for homogeneous functions
[16] we have

i VsV =1sV) | (42)
it VSV =11 - DSV @) ; (43)
hence, from Egs. (40), (41), (42), and (43),

2280®) = 11+ AP () (44)
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Thus, SI({ satisfies Eq. (39) with f = I(/+ 1) 7. This
means that S,(<) defines an orbital with a definite value of
the angular momentum. The above analysis shows that
this is true for any homogeneous function of r that obeys
the Laplace equation, including, of course, the tesseral
harmonics.

8.2 Components of angular momentum

The Cartesian operators for the components of angular
momentum are, from the Appendix,

Ly = —ih(JV, -2V ) , (45)
L, =—ih(zV,—3V,) , (46)
= —ih(2V, - V) . (47)

By straightforward application of these operators we

find the following:

1. Application to S%%, S(()%, and Séf))l as given by Eqgs. (6)
and (7) gives

D/~
LSip(E) =0 (48)
LSSy =0, (49)
I/~
L:Sio,(F) =0 . (50)

That is, each of these functions is an eigenfunction of
one component operator, having eigenvalue 0. These
are the only Maxwell-Cartesian harmonics which are
eigenfunctions of the component operators. For these
states the total angular momentum [/(/ + 1)] *1i lies
in the plane perpendicular to the axis along which the
angular momentum is zero.

2. More generally, SK) is a linear combination of two or
more Y, with different values of m. Since Y, is an
eigenfunction of L. with eigenvalue m#h, such an S,(g)
cannot be an eigenfunction of L,. The same holds for
L, and L,, since there is nothing unique about the
z-axis.

3. Since S,(g) is a linear combination of states with
definite angular momentum components m# along a
particular axis, the probability that an electron in that

state has a particular value of m is |c£2<|2/N1K [28].
The average angular momentum along the chosen
axis is then

I
(L) = (/Nig) Y mlel

m=—1

(51)

however, from Eq. (23) the probability is the same for
both m and —m. Hence (Ly) = 0. That is, the average
angular momentum along any axis vanishes for any
state S,(<) (A referee of this work has kindly pointed
out that this same conclusion follows from the fact
that L, is a pure imaginary Hermitian operator, while

the S,(;) are real, for the expectation values must be
real and must therefore vanish.)

In properties 2 and 3 the S}j) are like the commonly used

real orbital functions C(¥j, £Y;_,), where C is a
constant [29]. These functions are eigenfunctions of L,
only for m=0, and (L,) =0 owing to the equal
probabilities of m and —m.

8.3 Spherical symmetry relations

Equation (15) for the VY, functions belonging to a
given subshell / has been interpreted to mean that the
electron density in a closed subshell is spherically
symmetrical [29]. The remarkably similar Eq. (14) for

S,(!) evidently has a related signficance for electrons in
orbitals described by these functions. We can get an
insight into this significance by recasting Eq. (14) in
terms of the components of the compressed tensor as
in Eq. (2):

Zgll( f'

where the index K spans the (/ + 1)(/ + 2)/2 component
functions. Let the population of state IK be g(/; K)Ni,
the integral of the summand in Eq. (52) over the unit
sphere. Then the equation says that the probability
distribution of electrons is spherically symmetrical. An
example for the case / = 2 shows the significance of this.
From Eq. (15), the closed subshell for / =2 obeys

—2Y5 Yz,_] + 2Y22Y27_2 = 5/47‘C (53)
and from Eq. (21)

Zg@;mrs}?F
= Zg (2K) Z Z CoR ST Yom Y

m=—2 m'=

= (247‘6/5)(Y20 — 2Y21Y2,,1 + 2Y22Y2,,2) , (54)
2)

where the coefficients ¢, are taken from Table 3. If we
take the closed subshell sum 5/4x from Eq. (53), the sum
in Eq. (54) is (24n/5)(5/4n) = 6, which is just the value
(20)!/2" required. That is, a distribution of electrons
among S,g) states in proportion to g(/;K)Nix is
equivalent to a uniform population of the Y, states, as
in a closed subshell.

=(2n1/2", (52)

8.4 Basis functions for ab initio calculations

Electronic structures of molecules are calculated using
various basis functions to represent atomic orbitals in
modern ab initio computational methods [30, 31]. One of
the most widely used “primitives” for creating basis
functions is the Cartesian Gaussian function
= rle’crzc,,],,sz"‘ﬁ”zém ,

(55)

where n; + ny + n3 = [, and { and ¢, ,n, are optimized to
suit the particular problem. A typical basis function of
degree / is taken as a linear combination of primitives,

X}'I]Ilz}'l}



which can be written in the notation of a tensor
contraction:

¢, =r le=c) , (56)

where C) is a totally symmetric Cartesian tensor whose
components are the coefficients of the expansion. It is
assumed that { is constant for all the Gaussian
primitives in the contraction [32, 33]. The expression
in Eq. (56) is a homogeneous polynomial of degree /,
and is thus taken to represent, at least approximately, an
electronic state with angular momentum quantum
number /; however, a well-known problem that occurs
when /> 2 is that the polynomial is, in general,
“contaminated” by functions corresponding to lower
angular momentum [30].

A method that has been used to eliminate, or at least
separate, the contaminating functions is to combine the
Cartesian monomials in linear combinations equivalent
to the tesseral harmonics [32, 34]. A related but more
general method that would completely eliminate con-
taminants suggests itself from the basic properties of
spherical harmonics. A surface spherical harmonic f;(F)
can always be written [16]

fiE) =7, (57)

If we use this expression in place of the tensor
contraction in Eq. (56), we obtain

¢, =re 7, ¢ 58
I —

Slnce fi(f) is an eigenfunction of L? with eigenvalue

BI(1+ 1), ¢, is now a basis function with a definite
angular momentum. The only additional constraint
required in the 0pt1m1zat1on of the coefficients is that
the traces of C) given by Eq. (3) must all vanish.

It is worth noting that a basis function exactly
equivalent to Eq. (58) can be written in terms of Max-
well-Cartesian harmonics. Equation (5) with the de-
tracer exchange theorem gives

T,C0 i =D SOy (59)

The form on the right side is an expansion in pure
harmonics of degree / with unconstrained coefficients.
This form might be preferred for numerical computa-
tions if one wishes to trade the constraint of vanishing
traces for the somewhat greater complexity of the
harmonic functions.

9 Summary

This work presents a number of novel features of the
Maxwell-Cartesian spherical harmonic functions S’ (£)
and their relations to the more familiar tesseral harmonics
Yum (). A brief summary of the main results follows.

1. The tricorn array is introduced as a systematic means
of displaying the components of higher-order, totally
symmetric Cartesian tensors, such as those whose
components are the Sy  functions. In addition to
bringing out the symmetry of the components with
respect to permutation of the axes, the tricorn
conveniently displays the arrangement of functions
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constituting traces of the tensor on vertices of certain
subtricorns, the location of linearly independent
subsets on pairs of rows adjacent to the edges, the
rows of functions whose linear combinations produce
the tesseral harmonics, and the pattern of nonortho-
gonal pairs of functions on the trace networks.

2. The linear transformations between S,(f) and Y, are
accomplished with explicit formulas for the transfor-
mation coefficients.

3. The rotational transformation of the S[(:) functions is
described by the relatively simple method for a
compressed Cartesian tensor.

4. Two applications of the S,(;') functions in the theory of
multipole potentials are reviewed to demonstrate the
importance of the detracer exchange theorem and the
use of expansions in basis functions that are partially
hnearly dependent

5. Itis shown that SK (r) is a solution to the angular part
of the Schrodinger equation for the hydrogen atom
and represents an orbital with angular momentum
[1(1+ 1)]"?A. Such an orbital has no definite value of
the angular momentum along any axis except in
special cases where this component is zero. In general,
the expectation value of the angular momentum along
any axis is zero. The spherical symmetry of electron
density in a closed shell expressed by the Unsold
relation is shown to be accomphshed by an unequal
population of the S,<< orbitals in proportion to
appropriate weighting factors.

6. It is pointed out that the use of Cartesian spherical
harmonics in Gaussian basis sets used in ab initio
molecular structure calculations would provide basis
functions with definite values of the angular momen-
tum and thereby overcome the problem of “contam-
ination” of angular momentum in commonly used
basis functions.

7. Finally, the disparate definitions of spherical harmo-
nics mentioned in the Introduction require some
comment. We have seen that any function that fits the
classical definition is also an eigenfunction of L>. This
is not surprising, since any ‘‘classical” spherical
harmonic can be expressed as a linear combination
of V), functions of the same degree, and the linear
form of the eigenvalue problem ensures that such
combinations will be solutions. However, a curious
consequence of the quantum mechanical definition is
that such linear combinations are not, in general,
spherical harmonics. The classical definition makes
better sense for general usage, since it ensures that
the general solution of any linear problem whose
particular solutions are spherical harmonics will also
be a spherical harmonic. This disparity would be
easily resolved by omitting from the quantum
mechanical definition the requirement that the func-
tion be an eigenfunction of L.

10 Mathematica package
A Mathematica [35] program package for generating

formulas and graphics such as those shown here may be
obtained at http://www.public.iastate.edu/ " jba/ssh.



114
Appendix

Maxwell’s harmonics. Here it will be shown how one
obtains the Maxwell-Cartesian spherical harmonics
from Maxwell’s general harmonics. Maxwell defines a
surface spherical harmonic H, of degree n as a gradient
of ! in the form [1, 18]

_])n al’l ‘l
Hn: VH—I( _
T ohoh, - Ol r

where 4; denotes an arbitrary axis in the direction of unit
vector h; and 0/0h; = h; - 0/0r. He obtained the follow-
ing expression for the general gradient.

n2mm
5 mnin — i 2= :

where Z(/I"*z'”,ui") represents the sum of products of m
quantities iy =h; - h; and n — 2m quantities A; = h; - F,
with each suffix i or j occurring only once in the product.
If the h; are all taken to be Cartesian axes o;, then
0/0h; = 0/0ry,, A; = Py, and Hij = Ouya5 SO

Z )n 2m m 25%10&“

T{a}

where the sum over T{o} is the sum over all
permutations of a;---a, giving distinct terms. If we
now use (2n—2m— 1)!l=(2n—2m)!/2" " (n —m)!,
Egs. (A1) and (A2) give

(A1)

[n/2]
(2n —2m)!
}‘ﬂ
= Y

(A2)

0 I“ZmchmAl o, (A3)

o 1 (=1)" (/2]
- 1)"(2n — 2m — 1)

Ohy - -Oh,r Pt O( ) (2n=2m—1)

X Z O+ Oy oyl oy ** Py - (A4)

T{o}
However, the right side is just (—1)"#7"~1.7,#", accord-
ing to Eq. (4). Thus, from Egs. (A1) and (A4)
1 g oh

Hn = ;J nl (AS)

That is, the surface spherical harmonics .7 1" are special
cases of Maxwell’s spherical harmonics based on the
Cartesian axes.

I find no indication in Maxwell’s works [18, 36] that
he ever reduced his spherical harmonics to the Cartesian
form of Eq. (A4). Equivalent gradient formulas were
obtained by Kielich [37], Burgos and Bonadeo [38], and
Cipriani and Silvi [39] without reference to Maxwell’s
harmonics.

Angular Momentum. The angular momentum operators
used in the text are presented in terms of the unit vector rin
place of the spherical coordinates 0, ¢ used in most of the
literature. A proof is in order. We define V = 0/0r and
start with the angular momentum operator in terms of r [9]

L=—ifirxV . (A6)

From the definition t = r/r one finds
V=r'(V-tt-V) . (A7)

Inserting Eq. (A7) into Eq. (A6) gives the desired vector
operator:

L=—iitxV .
Then,
=L-L=-#@FxV)-(FxV) (A9)

Equation (A9) reduces to Eq. (40), with care to note that
the left ¥ x V operator acts on all that follows it,
including the right ¥ x V operator.

(A8)
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